Solutions of the Yang-baxter Equations from Braided-lie Algebras and Braided Groups

نویسنده

  • S. Majid
چکیده

We obtain an R-matrix or matrix representation of the Artin braid group acting in a canonical way on the vector space of every (super)-Lie algebra or braided-Lie algebra. The same result applies for every (super)-Hopf algebra or braided-Hopf algebra. We recover some known representations such as those associated to racks. We also obtain new representations such as a non-trivial one on the ring k[x] of polynomials in one variable, regarded as a braided-line. Representations of the extended Artin braid group for braids in the complement of S1 are also obtained by the same method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum and Braided Lie Algebras

We introduce the notion of a braided Lie algebra consisting of a finite-dimensional vector space L equipped with a bracket [ , ] : L⊗L → L and a Yang-Baxter operator Ψ : L⊗L → L⊗L obeying some axioms. We show that such an object has an enveloping braided-bialgebra U(L). We show that every generic R-matrix leads to such a braided Lie algebra with [ , ] given by structure constants cK determined ...

متن کامل

From the braided to the usual Yang-Baxter relation

Quantum monodromy matrices coming from a theory of two coupled (m)KdV equations are modified in order to satisfy the usual Yang-Baxter relation. As a consequence, a general connection between braided and unbraided (usual) Yang-Baxter algebras is derived and also analysed.

متن کامل

Local Quasitriangular Hopf Algebras

We find a new class of Hopf algebras, local quasitriangular Hopf algebras, which generalize quasitriangular Hopf algebras. Using these Hopf algebras, we obtain solutions of the Yang-Baxter equation in a systematic way. That is, the category of modules with finite cycles over a local quasitriangular Hopf algebra is a braided tensor category.

متن کامل

Braided modules and reflection equations

We introduce a representation theory of q-Lie algebras defined earlier in [DG1], [DG2], formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.

متن کامل

Equivariant noncommutative index on braided sphere

To some Hecke symmetries (i.e. Yang-Baxter braidings of Hecke type) we associate ”noncommutative varieties” called braided spheres. An example of such a variety is the Podles’ nonstandard quantum sphere. On any braided sphere we introduce and compute an ”equivariant” analogue of Connes’ noncommutative index. In contrast with the Connes’ construction our version of equivariant NC index is based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993